首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Neoproterozoic arc magmatism in the southern Madurai Block,India: Subduction,relamination, continental outbuilding,and the growth of Gondwana
Institution:1. School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China;2. Centre for Tectonics, Exploration and Research, University of Adelaide, Adelaide, SA 5005, Australia;3. Department of Geology, Northwest University, Northern Taibai Str. 229, Xi''an 710069, China;4. Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan;5. Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa;6. Department of Geology, University of Kerala, Kariyavattom Campus, Trivandrum 695 581, India;1. Department of Marine Geology and Geophysics, Cochin University of Science and Technology, Lakeside Campus, Kochi 16, India;2. Center for Tectonics, Resources and Exploration, Department of Earth Sciences, University of Adelaide, SA 5005, Australia;3. School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China;4. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan;5. Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa;6. CSIR — National Geophysical Research Institute, Hyderabad 500007, India;1. Marine and Coastal Survey Division, Geological Survey of India, Cochin 682037, India;2. Center for Tectonics, Resources and Exploration, Department of Earth Sciences, University of Adelaide, Australia;3. School of Earth Science and Resources, China University of Geosciences Beijing, 100083, China;4. Geochemistry Division, CSIR-National Geophysical Research Institute, Hyderabad, 500007, India
Abstract:The Madurai Block in southern India is a composite collage of at least three sub-blocks, with Neoarchean–Paleoproterozoic segments in the north and central domains, and a Neoproterozoic segment in the south. Here we investigate a suite of rocks with magmatic protoliths that constitute the basement in the southern margin of the Madurai Block including alkali granites, charnockites, enderbites and gabbros. The alkali granites are dominantly composed of perthitic K-feldspar, minor plagioclase and quartz, with hornblende as the main mafic mineral suggesting a calc-alkaline nature. The enderbites and charnockites have a broadly similar mineralogical constitution except for the variation in the modal content of plagioclase, K-feldspar and quartz, as well as the additional presence of clinopyroxene in some of the enderbites. The high modal content of hornblende in the gabbros suggests crystallization from hydrous basaltic melts. The geochemical features of this suite are identical to those of arc magmatic rocks, with distinct Nb, Ta, and Ti depletion suggesting magmatism in a subduction-related environment. We envisage that the underplating of basaltic magmas within a convergent margin setting provided the heat input for lower crustal melting generating the charnockitic suite of rocks. The intrusion of the underplated mafic melts as gabbroic dykes and sills into the crystallizing felsic magmas resulted in magma mixing and mingling generating the widespread enclaves of gabbroic rocks. The alkali granites were derived from the differentiation of lower crustal melts. Zircon U–Pb data from the alkali granites yield weighted mean 206Pb/238U ages of 786 ± 10 to 772 ± 11 Ma for the oldest and the most dominant group of magmatic grains, with a 662 ± 20 Ma subordinate group. The oldest group of magmatic zircons in the charnockite samples shows ages of 938 ± 27 Ma, 896 ± 12 Ma, and 786 ± 9 Ma, suggesting multiple magmatic pulses during early and mid-Neoproterozoic. A subordinate population of magmatic zircons with ages of 661 ± 9 Ma and 632 ± 7 Ma is also present. In the enderbites, the magmatic zircon population yields weighted mean ages of 926 ± 22 Ma, 923 ± 36 Ma, 889 ± 13 Ma, 803 ± 10 Ma, 787 ± 23 Ma, 786 ± 10 Ma, 748 ± 27 Ma, 742 ± 11 Ma, 717 ± 8 Ma and 692 ± 10 Ma suggesting continuous and multiple pulses of magmas emplaced throughout early to mid-Neoproterozoic. Magmatic zircons from the gabbros show weighted mean 206Pb/238U ages of 903 ± 13 Ma, 777 ± 10 Ma, 729 ± 10 Ma and 639 ± 27 Ma. Metamorphic zircons from all the rock types show latest Neoproterozoic-Cambrian ages in the range of 567 ± 19 Ma to 510 ± 8 Ma suggesting prolonged heating. Zircon Lu–Hf data show that the alkali granite-charnockite-enderbite suite has depleted mantle ages (TDM) in the range of 1164–2172 Ma and crustal residence ages (TDMC) of 1227–3023 Ma. These spots show both negative εHf(t) and positive εHf(t) values (? 22.1 to 10.6), suggesting magma derivation from mixed juvenile mid- to late-Mesoproterozoic components and reworked Mesoarchean to mid-Mesoproterozoic components. Zircon grains from the gabbroic rocks show depleted mantle ages and (TDM) in the range of 1112–2046 Ma, crustal residence ages (TDMC) of 1306–2816 Ma, and both negative and positive εHf(t) values (? 17.8 to 7.9), suggesting that the magmas were dominantly derived from juvenile mid-Mesoproterozoic to Neoproterozoic components as well as reworked Mesoarchean to mid-Mesoproterozoic sources.Our data clearly reveal multiple arc magmatism along the southern Madurai Block during distinct pulses throughout early to late Neoproterozoic, suggesting an active convergent margin along this zone at this time. Crustal thickening occurred through relamination by mafic magmas associated with slab melting. Continental outbuilding and southward growth of the Madurai Block were associated with the lateral accretion of the vast sedimentary belt of Trivandrum Block, culminating in collisional metamorphism during latest Neoproterozoic–Cambrian associated with Gondwana assembly.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号