Abstract: | A numerical approach is proposed to model the flow in porous media using homogenization theory. The proposed concept involves the analyses of micro‐true flow at pore‐level and macro‐seepage flow at macro‐level. Macro‐seepage and microscopic characteristic flow equations are first derived from the Navier–Stokes equation at low Reynolds number through a two‐scale homogenization method. This homogenization method adopts an asymptotic expansion of velocity and pressure through the micro‐structures of porous media. A slightly compressible condition is introduced to express the characteristic flow through only characteristic velocity. This characteristic flow is then numerically solved using a penalty FEM scheme. Reduced integration technique is introduced for the volumetric term to avoid mesh locking. Finally, the numerical model is examined using two sets of permeability test data on clay and one set of permeability test data on sand. The numerical predictions agree well with the experimental data if constraint water film is considered for clay and two‐dimensional cross‐connection effect is included for sand. Copyright © 2003 John Wiley & Sons, Ltd. |