首页 | 本学科首页   官方微博 | 高级检索  
     


Textural re-equilibration,hydrothermal alteration and element redistribution in Fe-Ti oxide pods,Singhbhum Shear Zone,eastern India
Affiliation:1. Department of Geological Sciences, Jadavpur University, Kolkata 700 032, India;2. Department of Geology and Geophysics, Indian Institute of Technology (IIT), Kharagpur 721302, India
Abstract:This study describes textures and mineral chemistry of magnetite-ilmenite-bearing pods/pockets in mineralogically diverse feldspathic schist near Pathargora in the Singhbhum Shear Zone, eastern India. The textural and geochemical characteristics of the magnetite-ilmenite assemblage are the results of a protracted geological history involving magmatic crystallization and oxidation-exsolution of titanomagnetite, deformation-induced recrystallization and textural re-equilibration and hydrothermal fluid-induced hematitization of magmatic magnetite. The magnetite grains contain characteristic trellis and sandwich ilmenite lamella, which are interpreted to be the products of oxidation-exsolution of ulvöspinel component of magnetite-ulvöspinel solid solution. The exsolution process was accompanied by preferential partitioning of spinel elements such as Cr, Al and V in magnetite and Ti, Mn, Mg, HFS elements (Nb, Ta), transition elements (Sc, Co, Cu and Zn) and granitophile elements (Mo, Sn and W) in ilmenite. The deformed sandwich lamella is locally recrystallized and transformed into granular ilmenite close to fractures, micro-shear planes and magnetite grain boundaries. Coarse granules of ilmenite, within or associated with magnetite, are of two textural types: one invariably contains Fe-rich exsolved phase and may be of magmatic origin, while the other mostly formed by strain-induced, fluid-mediated expulsion (from the interior of magnetite to its boundary) and dynamic recrystallization of existing ilmenite lamella in magnetite, and dynamic recrystallization of primary ilmenite containing Fe-rich exsolved phases. Magnetite is variably hematitized. The highly porous nature and trace element geochemistry of hematite and mass-balance calculations suggest the hematitization was mostly redox-independent and was caused by infiltration of metal-rich, reduced and acidic fluid. The hematitization process was associated with significant enrichment and immobilization of U, Th, Pb, REEs, Cu, Mo and W and depletion of Ni, Cr, V in hematite.
Keywords:Magnetite-ilmenite intergrowth  Hematitization  Dynamic recrystallization  Trace elements  Mass balance  Element redistribution  Singhbhum Shear Zone
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号