首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energetics of metamorphic crystallization
Authors:Paul H Reitan
Institution:Department of Geological Sciences, State University of New York at Buffalo, Buffalo, New York 14226, U.S.A.
Abstract:Metamorphic crystallization necessitates nucleation of new grains. Associated with this process is an energy barrier which requires an input of energy sufficient to make the net change of free energy with nucleus growth decrease so that the process of grain crystallization will proceed. Temperature increase and elastic strain are widely accepted as capable of including metamorphic crystallization. Evaluation of these suggests that an energy input on the order of 0.x cal gm?1 is commonly enough to overcome the energy barrier and induce metamorphic crystallization. Both processes are necessarily timebound to the time of energy input. Conservative quantitative evaluations of the increase in interfacial free energy by grain size reduction, and of the energy increase resulting from increased dislocation density of grains, show that energetically, these may be equally capable of inducing metamorphic crystallization. These processes can store energy in the system; later release of that energy by metamorphic crystallization may occur under stress and temperature conditions much different from those that accompanied the input of the energy. Furthermore, the formation of a new set of grains will necessarily eliminate the evidence of the precursor state, whether fine granulation or a condition of high dislocation density in the grains of the system.Experiments have demonstrated the existence and properties of tiny short-lived hot spots on the surfaces of sliding solids. From this we infer the likelihood of such high spot temperatures being realized at grain boundaries during penetrative deformation. The energy concentrated at these spots may help to overcome the energy barrier to nucleation and grain growth and may stimulate formation of stable grains and the progressive elimination of metastable grains during deformation. This is a syntectonic process, but recognizing that syntectonic metamorphic crystallization is most characteristic of regionally dynamothermally metamorphosed terranes, the importance of grain boundary hot spots in providing energy for metamorphic crystallization may be very great.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号