首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The I-Xe chronometer
Authors:C M Hohenberg  R H Brazzle  O V Pravdivtseva  A P Meshik
Institution:(1) Department of Physics and McDonnell Center for Space Sciences, Washington University, 63130 St. Louis, MO, USA
Abstract:129Xe, from the decay of the now-extinct 16.7 Ma129I, accumulates in iodine-bearing sites and since most iodine host phases are secondary, the I-Xe system is typically a chronometer for post-formational processes. The validity of the I-Xe chronometer is confirmed by comparison with Pb-Pb ages on phosphate and feldspar separates from twelve meteorites. Phosphate separates are found to be concordant with Pb-Pb for all six samples in which useful I-Xe data were obtained. Feldspar is a better iodine host than apatite in H chondrites, typically providing good I-Xe isochrons. These too are concordant with the Pb-Pb ages of the corresponding phosphates for five out of six feldspar separates. The exception is Allegan whose feldspar yields one of the oldest I-Xe ages observed, similar to those for CI and CM magnetites. We attribute this to a more primary mineralization, predating the secondary phosphate from which the comparison Pb-Pb age was obtained. Absolute I-Xe ages, found using the reported Pb-Pb age of Acapulco phosphate provide an absolute I-Xe age of 4.566 ± 0.002 Ga for both Shallowater and Bjurböle irradiation standards. This allows relative I-Xe ages to be interpreted in the context of absolute ages.
Keywords:Chronometry  age dating  I-Xe  extinct radionuclides
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号