首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new approach to numerical method of modelling geological processes and rock engineering problems — continuum to discontinuum and linearity to nonlinearity
Authors:CA Tang  WT Yang  YF Fu  XH Xu
Institution:

aCenter for Rockbursts and Induced Seismicity Research, Northeastern University, Shenyang 110006,People's Republic of China

Abstract:Numerical modelling as an efficient method is widely employed in various fields of science and engineering. In rock mechanics and geomechanics, considerable progress has been made in numerical simulation on nonlinear and discontinuum problems. However, there is a tendency in this field that the theoretical framework for nonlinear and discontinuum problems becomes more and more complicated and sometimes becomes less practicable. This paper gives a brief introduction to a newly developed numerical code, RFPA2D (rock failure process analysis), which is mathematically a linear and continuum mechanics method for numerically processing nonlinear and discontinuum mechanics problems in rock failure. Although it is simple comparing with other numerical methods for nonlinear and discontinuum problems. It allows one to model the observed evolution of the progressive failure leading to collapse in brittle rocks. An important conclusion from the simulation results is that the microscale heterogeneity is the source of macroscale nonlinearity. Examples showing the potential applications are given in this paper. It can be seen that the RFPA2D has a unique ability to reveal the evolutionary nature of the fracture phenomenon from microfracture scale to global failure, and the great potential exists in modelling mining induced rockbursts and stability of underground openings in greath depth. The capabilities to handle dilation, self-induced faults or even block movement and rotation should also attract applications in the fields of geomechanics as well as rock mechanics.
Keywords:Numerical method  Modelling  Geological processes  Rock engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号