Some identities for spheroidal harmonics |
| |
Authors: | R. G. Langebartel |
| |
Affiliation: | 1. Mathematics Department, University of Illinois, Urbana, Ill., USA
|
| |
Abstract: | The spheroidal harmonics expressions $$left[ {P_{2k}^{2s} left( {ixi } right)P_{2k - 2r}^{2s} left( eta right) - P_{2k - 2r}^{2s} left( {ixi } right)P_{2k}^{2s} left( eta right)} right]e^{i2stheta } $$ and $$left[ {eta ^2 P_{2k}^{2s} left( {ixi } right)P_{2k - 2r}^{2s} left( eta right) + xi ^2 P_{2k - 2r}^{2s} left( {ixi } right)P_{2k}^{2s} left( eta right)} right]e^{i2stheta } $$ , have ξ2+η2 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ2+η2 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|