首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-Dimensional Scalar Spectra in the Deeper Layers of a Dense and Uniform Model Canopy
Authors:D Poggi  G G Katul
Institution:(1) Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Torino, Italy;(2) Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA;(3) Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
Abstract:The turbulent flow inside dense canopies is characterized by wake production and short-circuiting of the energy cascade. How these processes affect passive scalar concentration variability in general and their spectral properties in particular remains a vexing problem. Progress on this problem is frustrated by the shortage of high resolution spatial concentration measurements, and by the lack of simplified analytical models that connect spectral modulations in the turbulent kinetic energy (TKE) cascade to scalar spectra. Here, we report the first planar two-dimensional scalar concentration spectra (ϕ cc ) inside tall canopies derived from flow visualization experiments. These experiments were conducted within the deeper layers of a model canopy composed of densely arrayed cylinders welded to the bottom of a large recirculating water channel. We found that in the spectral region experiencing wake production, the ϕ cc exhibits directional scaling power laws. In the longitudinal direction (x), or the direction experiencing the largest drag force, the ϕ cc (k x ) was steeper than $$k_x^{-5/3}$$ and followed an approximate $$k_x^{-7/3}$$ at wavenumbers larger than the injection scale of wake energy, where k x is the longitudinal wavenumber. In the lateral direction (y), the spectra scaled as $$k_y^{-5/3}$$ up to the injection scale, and then decayed at an approximate $$k_y^{-7/3}$$ power law. This departure from the classical inertial subrange scaling (i.e., k −5/3) was reproduced using a newly proposed analytical solution to a simplified scalar spectral budget equation. Near the velocity viscous dissipation range, the scalar spectra appear to approach an approximate k −3, a tantalizing result consistent with dimensional analysis used in the inertial-diffusive range. Implications to subgrid modelling for large-eddy simulations (LES) inside canopies are briefly discussed.
Keywords:Canopy turbulence  Laser-induced fluorescence technique  Two-dimensional scalar spectra  Wake production
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号