首页 | 本学科首页   官方微博 | 高级检索  
     

基于二代Curvelet变换的自适应图像去噪
引用本文:仇宫润,秦志远,李晓霞,田富,侯四国. 基于二代Curvelet变换的自适应图像去噪[J]. 测绘科学, 2009, 34(5)
作者姓名:仇宫润  秦志远  李晓霞  田富  侯四国
作者单位:1. 信息工程大学测绘学院,郑州,450052
2. 测绘信息中心,北京,100088
摘    要:小波变换不能够最优地表示图像的边缘,而Curvelet变换硬阈值去噪后的图像过于平滑。二代离散Cur-velet变换运算速度非常快,而且基于Bayes原理的自适应阈值选择是子带变化的,具有最小的Bayesian风险。提出了一种基于二代Curvelet变换同Bayes原理相结合的自适应图像去噪算法,实验结果表明,该算法不仅能够有效地去除了噪声、较好地保留了图像的边缘信息,而且运算快速。

关 键 词:小波变换  Ridgelet变换  Curvelet变换  图像去噪

An adaptive image denoising algorithm based on second generation Curvelet transform
QIU Gong-run,QIN Zhi-yuan,LI Xiao-xia,TIAN Fu,HOU Si-guo. An adaptive image denoising algorithm based on second generation Curvelet transform[J]. Science of Surveying and Mapping, 2009, 34(5)
Authors:QIU Gong-run  QIN Zhi-yuan  LI Xiao-xia  TIAN Fu  HOU Si-guo
Abstract:Wavelet transform can't excellently express image edges,and images after Curvelet transform denoising based on hard threshold is too smoothing.Second generation discrete curvelet transform operates rapidly and adaptive threshold selection based on Bayes theory varies along with sub-bands,so it has the least Bayesian risk.The paper proposed an adaptive image denoising algorithm based on second generation curvelet transform and Bayes theory.Experiment results show that the algorithm could not only remove the noise while preserving image edges,but also operate rapidly.
Keywords:wavelet transformation  Ridgelet transformation  Curvelet transformation  image denoising
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号