首页 | 本学科首页   官方微博 | 高级检索  
     


Seasonal and decadal subsurface thaw dynamics of an Aufeis feature investigated through numerical simulations
Authors:Alexi Lainis  Roseanna M. Neupauer  Joshua C. Koch  Michael N. Gooseff
Affiliation:1. Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA

Denver Water, Denver, Colorado, USA;2. Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA;3. Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA

Abstract:Aufeis (also known as icings) are large sheet-like masses of layered ice that form in river channels in arctic environments in the winter as groundwater discharges to the land surface and subsequently freezes. Aufeis are important sources of water for Arctic river ecosystems, bolstering late summer river discharge and providing habitat for caribou escaping insect harassment. The aim of this research is to use numerical simulations to evaluate a conceptual model of subsurface hydrogeothermal conditions that can lead to the formation of aufeis. We used a conceptual model based on geophysical data from the Kuparuk aufeis field on the North Slope of Alaska to develop a two-dimensional heterogeneous vertical profile model of groundwater flow, heat transport, and freeze/thaw dynamics. Modelling results showed that groundwater can flow to the land surface through subvertical high permeability pathways during winter months when the lower permeability soils near the land surface are frozen. The groundwater discharge can freeze on the surface, contributing to aufeis formation throughout the winter. We performed sensitivity analyses on subsurface properties and surface temperature and found that aufeis formation is most sensitive to the volume of unfrozen water available in the subsurface and the rate at which the subsurface water travels to the land surface. Although a trend of warming air temperatures will lead to a greater volume of unfrozen subsurface water, the aufeis volume can be reduced under warming conditions if the period of time for which air temperatures are below freezing is reduced.
Keywords:aufeis  groundwater  Kuparuk aufeis field  SUTRA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号