首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrate sources and sinks in Elkhorn Slough,California: Results from long-term continuous in situ nitrate analyzers
Authors:Email author" target="_blank">Thomas?P?ChapinEmail author  Jane?M?Caffrey  Hans?W?Jannasch  Luke?J?Coletti  John?C?Haskins  Kenneth?S?Johnson
Institution:(1) Elkhorn Slough National Estuarine Research Reserve, 1700 Elkhorn Road, Watsonville, CA 95076, USA;(2) Institute of Marine Sciences, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;(3) Department of Ecology and Evolutionary Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
Abstract:Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 μM. The propagation of an internal wave carrying water from ≈100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80–90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0–20 μM during the dry summer months. Nitrate in Azevedo Pond increased to over 450 μM during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m?2 d?1 for the entire Elkhorn Slough and 1 mmol NO3 m?2 d?1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO3 flux.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号