首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solar dynamo and geomagnetic activity
Authors:Katya Georgieva  Boian Kirov
Institution:1. Department of Astronomy, Nanjing University, Nanjing, Jiangsu 210000, China;2. College of Science, Hainan tropical ocean University, Sanya 572022, China;3. National Astronomical Observatory, Chinese Academy of Sciences, Beijing, 100000, China
Abstract:The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号