首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace and minor element geochemistry of the rhyolitic volcanic rocks,Central North Island,New Zealand
Authors:A Ewart  S R Taylor  Annette C Capp
Institution:1. Dept. of Geophysics and Geochemistry, Australian National University, Canberra, Australia
2. Dept. Geology and Mineralogy, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
Abstract:Analytical data are presented for the following elements: Cs, Rb, Ba, K, Sr, Ca, Na, Fe, Mg, Cu, Co, Ni, Li, Sc, V, Cr, Ga, Al, Si, La, Y, and Zr. Eight samples were analysed by the spark source method for rare earths, Tl, Pb, Hf, Sn, Nb, Mo, Bi, and In. In addition to data on rhyolitic volcanics, a small number of intermediate volcanics and eugeosynclinal sediments were analysed for comparative purposes. The following features are shown by the trace element data:
  1. The rhyolitic rocks have consistently lower concentrations of most trace and minor elements when compared with recent estimates of average concentrations in granites. None of the criteria for strong fractionation (e.g. low K/Rb, Ba/Rb and K/Cs ratios) are present.
  2. The data do not indicate any systematic differences between the rhyolitic lavas and ignimbrites, although the very young rhyolitic pumices are consistently more “basic” in their element concentrations compared to the other rhyolitic analyses.
  3. The residual glasses (and devitrified matrices) are depleted, relative to the total rock compositions, in Fe, Mg, Ca, Sr, V, Sc, and Al, and enriched in Cs, Rb, K, Ba, and Si. Zr is depleted in the residual glasses separated from rhyolites, but not in the andesitic residual matrices.
  4. The rare earth fractionation patterns of the rhyolitic and andesitic extrusives are very similar, being intermediate between chondritic and sedimentary patterns i.e., there is no evidence of strong fractionation. The rhyolitic patterns also indicate a slight Eu depletion.
  5. Comparable trace and minor element behaviour (with the possible exception of Zr) seems to exist through the rhyolite-andesite compositional range. This is supported by the whole rock-residual liquid trends for the various elements studied, which broadly coincide with the observed whole rock trends, both through the rhyolitic-andesitic compositonal range, and within the rhyolitic compositional range.
The data are finally discussed in the light of the possible origin of the rhyolitic magmas. It is believed that the analytical data presented are qualitatively consistent with the recently proposed idea that the magmas are derived by partial fusion of the associated Triassic-Jurassic eugeosynclinal greywacke-argillite sedimentary sequence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号