首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrahigh energy cosmic ray acceleration in Seyfert galactic nuclei
Authors:A V Uryson
Institution:(1) Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, Moscow, 117924, Russia
Abstract:We propose a model for the particle acceleration to energy E≈1021 eV in Seyfert galactic nuclei. The model is based on the theory of active galactic nuclei by Vilkoviskij et al. (1999). The acceleration takes place in hot spots of relativistic jets, which decay in a dense stellar kernel at a distance of 1–3 pc from the center. The maximum energy and chemical composition of the accelerated particles depend on the jet magnetic-field strength. Fe nuclei acquire the largest energy, E≈8×1020 eV, if the jet field strength is B≈16 G. At a field strength B~5–40 G, the nuclei with Z≥10 acquire energy E≥2×1020 eV; the lighter nuclei are accelerated to E≤1020 eV. In a field B~1000 G, only the particles with Z≥23 gain energy E≤1020 eV. The protons are accelerated to E<4×1019 eV, and they do not fall within the energy range concerned at any field strength B. Interactions with infrared photons do not affect the accelerated-particle escape from the sources if the galactic luminosity L≤1046 erg s?1 and if the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the galactic-disk axial ratio is comparatively large. The particles do not lose their energy through magnetodrift radiation if their deflection from the jet axis does not exceed 0.03–0.04 pc at a distance R≈40–50 pc from the center. The synchrotron losses are small, because the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) predominantly along the motion. If this model is correct, then the detected protons are nuclear fragments or are accelerated in other sources. The jet magnetic fields can be estimated by using the cosmic-ray energy spectrum and chemical composition.
Keywords:cosmic rays  nonthermal radiation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号