首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous Solving of Three-Dimensional Gravity Anomalies Caused by Pumping Tests in Unconfined Aquifers
Authors:Andrés González-Quirós  José Paulino Fernández-Álvarez
Institution:1. Hydro-Geophysics and NDT Modelling Unit, Polytechnic School of Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós S/N, 33600?, Mieres, Spain
2. Department of Mining Exploitation and Prospecting, Polytechnic School of Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós S/N, 33600?, Mieres, Spain
Abstract:The contribution of geophysical techniques to groundwater characterization has largely evolved during the last two decades. As gravity is a geophysical technique sensitive to underground mass variations and due to the improved resolution of modern gravity meters, it can provide information on changes in the phreatic level caused by water being pumped from unconfined aquifers. Previous studies simulated the hydraulic head and the gravimetric anomaly using independent codes. The mass change associated to the pumping well-simulated drawdown had to be externally transferred to the gravity code used to simulate the gravimetrical anomaly, which has severe drawbacks. This article describes how to solve the forward coupled hydro-gravity problem using a unique finite-element code. To illustrate it, it is shown the case of a two-dimensional hydraulic model coupled to its three-dimensional gravity anomaly and also a more complex case where both related domains are three-dimensional. Both are compared against analytical solutions and discussed. The methodology is very flexible, general and amenable to extensions like including heterogeneous domains or coupling with the inverse problem in the same loop.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号