首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004–2008
Authors:Weiqing Han  Andrew M Moore  Julia Levin  Bin Zhang  Hernan G Arango  Enrique Curchitser  Emanuele Di Lorenzo  Arnold L Gordon  Jialin Lin
Institution:aDepartment of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309, USA;bOcean Sciences Department, University of California, Santa Cruz, CA, USA;cIMCS, Rutgers University, New Brunswick, NJ, USA;dEAS, Georgia Institute of Technology, Atlanta, GA, USA;eLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA;fDepartment of Geography, Ohio State University, Columbus, OH, USA
Abstract:The dynamics of the seasonal surface circulation in the Philippine Archipelago (117°E–128°E, 0°N–14°N) are investigated using a high-resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004–March 2008. Three experiments were performed to estimate the relative importance of local, remote and tidal forcing. On the annual mean, the circulation in the Sulu Sea shows inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s−1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the surface water of the western Pacific (WP) from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry the surface water from the WP near the San Bernardino Strait into the Sulu Sea via the Tablas Strait.These surface currents exhibit strong variations or reversals from winter to summer. The cyclonic (anticyclonic) circulation during winter (summer) in the Sulu Sea and seasonally reversing currents within the Archipelago region during the peak of the winter (summer) monsoon result mainly from local wind forcing, while remote forcing dominates the current variations at the Mindoro Strait, western Sulu Sea and Sibutu passage before the monsoons reach their peaks. The temporal variations (with the mean removed), also referred to as anomalies, of volume transports in the upper 40 m at eight major Straits are caused predominantly by remote forcing, although local forcing can be large during sometime of a year. For example, at the Mindoro Strait, the correlation between the time series of transport anomalies due to total forcing (local, remote and tides) and that due only to the remote forcing is 0.81 above 95% significance, comparing to the correlation of 0.64 between the total and local forcing. Similarly, at the Sibutu Passage, the correlation is 0.96 for total versus remote effects, comparing to 0.53 for total versus local forcing. The standard deviations of transports from the total, remote and local effects are 0.59 Sv, 0.50 Sv, and 0.36 Sv, respectively, at the Mindoro Strait; and 1.21 Sv, 1.13 Sv, and 0.59 Sv at the Sibutu Passage. Nonlinear rectification of tides reduces the mean westward transports at the Surigao, San Bernardino and Dipolog Straits, and it also has non-negligible influence on the seasonal circulation in the Sulu Sea.
Keywords:Philippine Archipelago  Straits  Circulation and dynamics  Transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号