首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometric adjustment of pools to changes in slope and discharge: a flume experiment
Authors:Douglas M Thompson  
Abstract:To characterize the factors controlling pool shape, 30 different forced pools were created utilizing a 50% triangular constriction in a 0.5-m wide, 6-m long recirculating flume. Pools were scoured from an initial plane bed of sand with a d50 of 0.25 mm. Pool depth and length were measured and used as dependent variables in least-squares, multiple-regression analyses. Discharge, channel-bed gradient and energy slope were the independent variables. Additional linear-regression analyses were conducted with either pool depth or length and stream power. Results indicate that both pool depth and length are primarily a function of discharge. Channel-bed and energy slopes are also significantly related to pool length but are not significantly related to pool depth. Stream power is significantly related to both pool depth and length, but R2 values for pool depth versus discharge indicate stronger relations than those between pool depth and stream power. Observations on the type of geometric adjustment indicate that pools may minimize their rate of energy expenditure primarily through elongation. In contrast, pool depth appears to be more sensitive to the characteristics of the constrictions that create the forced pools. The results suggest that many field studies may suffer from cross-correlation problems. In particular, channel erodibility may exert a more dominant influence on pool geometry than hydraulic controls in many constriction-influenced channels.
Keywords:Pool maintenance  Pool length  Pool depth  Hydraulic geometry  Stream power
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号