首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quasistatic propagation of a normal fault: A fracture mechanics model
Institution:1. Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel;2. Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904,Israel;1. Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany;2. Max-Planck-Institut für Chemie (Otto-Hahn-Institut), Postfach 3060, 55020 Mainz, Germany;3. Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain;4. Max-Planck-Institut für evolutionäre Anthropologie, Abteilung für Humanevolution, Deutscher Platz 6, 04103 Leipzig, Germany;5. Institut für Geologie, Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Abstract:We have carried out boundary element calculations to simulate quasistatic propagation of a normal fault in the earth's crust under a horizontal tensile loading. Byerlee's frictional law is employed to describe the mechanical behavior of the fault surface. We hypothesize that in order for a normal fault to grow quasistatically, the mixed-mode effective shear stress intensity factor must exceed a threshold value (fracture toughness), a crustal material property. We suggest that the fault grows in a direction of local maximum shear stress. The direction of fault propagation thus depends on the ratio of tensile and shear stress intensity factors. A listric normal fault is likely to form in crustal material with a small shear fracture toughness. A listric normal fault is also more likely to form in crustal material with a high degree of plasticity.The propagation trajectory of an incrementally growing normal fault is examined. As the normal fault extends to a greater depth, the shear stress intensity factor drops, owing to an increase in fault surface friction. The equilibrium depth to which a normal fault will grow is controlled by the far field loading and the fracture mechanical property of the crustal material. The decrease of shear stress intensity with fault length also stabilizes the fault growth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号