首页 | 本学科首页   官方微博 | 高级检索  
     


The surface texture of the Saharan Debris Flow deposit and some speculations on submarine debris flow processes
Authors:D. G. MASSON,Q. J. HUGGETT,D. BRUNSDEN&dagger  
Affiliation:Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road, Wormley, Surrey GU8 5UB, UK;Department of Geography, King's College London, Strand, London WC2R 2LS, UK
Abstract:Deep towed 30 kHz sidescan sonar data from the Saharan Debris Flow deposit, west of the Canary Islands, show spectacular backscatter patterns which are interpreted in terms of flow banding, longitudinal shears, lateral ridges (levees) and transported blocks. Identification of these features is based on high resolution seismic profiles and on a comparison with similar structures seen in better known environments including other marine debris flows and slides, subaerial sediment failures (particularly rock fall avalanches), glaciers and lava flows. Flow banding in the debris flow, picked out by bands of differing backscatter intensity, is on a scale of tens to hundreds of metres. It is considered to result from flow streaming of clasts, with variation in clast size between bands. This primary fabric is cut by a series of distinct flow-parallel longitudinal shears. Broad, high backscatter longitudinal bands along the edge of and within the debris flow are interpreted as lateral ridges associated with multiple flow pulses; the high backscatter possibly reflects either a concentration of coarse grained material or chaotic sediments deposited from a turbulent flow. Coherent, low backscatter patches are interpreted as rafted blocks, although streamlined haloes of high backscatter material around some blocks indicates differential movement between block and flow, possibly during the waning stages of the flow. A non-turbulent debris flow model is preferred, in which a raft of more or less coherent material is carried along by a base undergoing laminar flow. Speculatively, the lack of turbulent mixing preserves original sedimentological heterogeneity from the debris flow source area, possibly in the form of clast size distributions. These heterogeneous sediments are drawn out into a flow-parallel banding which is imaged as the flow-parallel backscatter intensity banding. The upper raft of material responds to cross-flow velocity differences, and perhaps to variations in the timing of flow movement, primarily by longitudinal shearing. More complex deformation of the flow banding occurs at the flow margins and around obstacles in the flow, where lateral velocity shear would be expected to be highest.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号