Avalonian (Pan-African) mylonitic deformation west of Boston, U.S.A. |
| |
Authors: | N. Rast J. W. Skehan |
| |
Abstract: | West of Boston, Mass., Castle and others (1976) recognized an up to 5km wide, possibly folded, NE-SW trending Burlington Mylonite Zone. We have extended mapping south into Natick and Framington quadrangles, and supplemented it by fixing local directions of tectonic motion, which are more variable than reported by Goldstein (1989). In Natick the mylonite zone is partly migmatized and converted into blastomylonites, forming the lithodemic Rice Gneiss and is intersected by the Dedham Granite dated ca 630 Ma. The granite also invades deformed, folded, and commonly mylonitized Westboro Quartzite. Thus mylonitization, folding, and formation of migmatitic blastomylonites are all earlier than ca 630 Ma, and can collectively be attributed to the main phase of the Avalonian orogeny that in Africa is referred to as the Pan-African I. The sense of movements in the Rice Gneiss is generally sinistral strike-slip with a NE-SW trend of foliation. Other local mylonites have more variable directions of motion.A narrower E-W zone of mylonitization has been recognized by Grimes (M.S. thesis 1993, Boston College) and named the Nobscot Shear Zone. It affects the Milford Granite, also about 630 Ma in age, while similar but narrow shear zones affect other local granites including the Dedham. These zones, dipping steeply north and including the Nobscot, are less intensely mylonitized and are not associated with migmatites. Their age is not known, but since they affect only Precambrian rocks, they are assumed to be late Proterozoic. We attribute these zones to the second stage of the Avalonian or the Pan-African II.The older rocks west of Boston are widely affected by numerous brittle faults. These are all of unknown age, but probably Phanerozoic. The most significant brittle fault in the Burlington area is the mid to late Paleozoic Bloody Bluff Fault. We do not associate large scale mylonitization with that fault, because the mylonites are commonly cut by undeformed or little deformed Siluro-Devonian gabbro-diorites. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|