首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Broadband synthetic aperture borehole radar interferometry
Authors:I Mason  N Osman  Q Liu  C Simmat  M Li
Abstract:Trials in mines have established that wideband VHF borehole radars (BHR), working in the 10–100-MHz band, can be used to probe the rockmass between boreholes over ranges from <5 m to as much as 150 m with submeter resolution. There is evidence that ore bodies reflect these radar signals both specularly and diffusely, much as the ground/air interface does when overflown by synthetic aperture radar (SAR). In both SAR and BHR, multiple flight lines, together with diffuse reflections admit the possibility of developing interferometric 3D images of the object. This paper examines the possibility of imaging buried objects in three dimensions by interferometrically combining broadband VHF borehole radar profiles shot in adjacent pairs of boreholes. Broadbanding in BHR has the advantage of releasing the image from 2 phase ambiguities, but practically, interferometric borehole radar (InBHR) needs high signal-to-noise ratios (SNR) to avoid noise capture. This means that 3D InBHR is limited to ranges in wavelengths which are less than the rock's attenuation factor Q. Interferometric methods are developed which are capable of mapping ore bodies and other structures in three dimensions. Tangent plane migration methods are developed here in order to reconstruct surfaces that lie in the near-field of sparse interferometric arrays.
Keywords:Borehole radar  Interferometry  3D imaging  Sparse array  Tangent plane migration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号