首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DEM investigation on fracture mechanism of the CCNSCB specimen under intermediate dynamic loading
Authors:P Feng  M R Ayatollahi  F Dai  N W Xu  M D Wei
Institution:1.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower,Sichuan University,Chengdu,China;2.Fatigue and Fracture Lab., Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering,Iran University of Science and technology,Tehran,Iran
Abstract:The cracked chevron notched semi-circular bending (CCNSCB) method falls into a significant testing category of chevron notched specimens for measuring the mode I fracture toughness, of which the progressive fracture mechanism deserves to be further assessed under intermediate dynamic loading rate (IDLR). In this study, the discrete element method (DEM) is adopted to depict the three-dimensional fracture processes of the CCNSCB specimens subjected to different IDLRs considering different supporting spans. The results demonstrate that the crack front of the CCNSCB specimen with any loading condition is prominently curved, which violates the straight-through crack propagation assumption and may induce some errors in the fracture toughness measurements. For each IDLR, the peak force of the CCNSCB specimen evidently increases with decreased supporting span, and the effect of loading rate on this parameter is more prominent for a smaller supporting span. For a relatively large span, the crack grows restrictively in the notched ligament, which conforms to the ideal assumption of the fracture process and contributes to an accurate measurement of the mode I fracture toughness. Thus, a large supporting span is suggested for the semi-circular bend tests. Additionally, the critical crack length and peak force are found dependent on the loading rate, and they are larger for the higher loading rate. Thus, the critical crack length determined under quasi-static conditions is not strictly suitable for the specimens under different IDLRs, especially for the much higher IDLR. This study calls for more attention on how to accurately determine the fracture toughness via chevron notched samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号