首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Plagioclase-Magma Density Paradox Re-examined and the Crystallization of Proterozoic Anorthosites
Authors:SCOATES  JAMES S
Institution:DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES (DSTE), UNIVERSITÉ LIBRE DE BRUXELLES, CP160/02, AVENUE F. D. ROOSEVELT 50, B-1050, BRUSSELS, BELGIUM
Abstract:Intermediate-composition plagioclase (An40–60) is typicallyless dense than the relatively evolved basaltic magmas fromwhich it crystallizes and the crystallization of plagioclaseproduces a dense residual liquid, thus plagioclase should havea tendency to float in these magmatic systems. There is, however,little direct evidence for plagioclase flotation cumulates eitherin layered intrusions or in Proterozoic anorthosite complexes.The layered series of the Poe Mountain anorthosite, southeastWyoming, contains numerous anorthosite–leucogabbro blocksthat constrain density relations during differentiation. Allblocks are more mafic than their hosting anorthositic cumulates,their plagioclase compositions are more calcic, and each blockis in strong Sr isotopic disequilibrium with its host cumulate.Associated structures—disrupted and deformed layering—indicatethat (1) a floor was present during crystallization and thatplagioclase was accumulating and/or crystallizing on the floor,(2) compositional layering and plagioclase lamination formeddirectly at the magma–crystal pile interface, and (3)the upper portions of the crystal pile contained significantamounts of interstitial melt. Liquid densities are calculatedfor proposed high-Al olivine gabbroic parental magmas and Fe-enrichedferrodioritic and monzodioritic residual magmas of the anorthositestaking into account pressure, oxygen fugacity, P2O5, estimatedvolatile contents, and variable temperatures of crystallization.For all reasonable conditions, calculated block densities aregreater than those of the associated melt. The liquid densities,however, are greater than those for An40–60 plagioclase,which cannot have settled to the floor. Plagioclase must eitherhave been carried to the floor in relatively dense packets ofcooled liquid plus crystals or have crystallized in situ. Asloping floor, possibly produced by diapiric ascent of relativelylight plagioclase-rich cumulates, is required to allow for drainingand removal of the dense interstitial liquid produced in thecrystal pile and may be a characteristic feature during thecrystallization of many Proterozoic anorthosites and layeredintrusions. KEY WORDS: magma; density; Proterozoic anorthosites; blocks; plagioclase
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号