首页 | 本学科首页   官方微博 | 高级检索  
     

两种微物理方案对夏季东北亚阻塞过程影响的数值模拟结果分析
引用本文:杨旭,钟中,廉毅,李彦良,曲思邈. 两种微物理方案对夏季东北亚阻塞过程影响的数值模拟结果分析[J]. 气象学报, 2020, 78(4): 593-607. DOI: 10.11676/qxxb2020.041
作者姓名:杨旭  钟中  廉毅  李彦良  曲思邈
作者单位:1.吉林省气象科学研究所长白山气象与气候变化吉林省重点实验室/中高纬度环流系统与东亚季风研究开放实验室,长春,130062
基金项目:国家自然科学基金项目(41630424、41741021、41875119)、中国气象局省级气象科研所科技创新发展项目(SSFZ201806)
摘    要:选用NCEP/NCAR FNL再分析资料,利用中尺度模式WRF对2011年7月25日—8月3日的一次东北亚阻塞高压过程进行数值模拟试验。通过数值对比试验,讨论有冰相物理过程和无冰相物理过程的两种微物理方案对此次阻塞高压过程的强度和维持时间模拟的差异,并简要阐述原因。结果表明:WRF对阻塞高压过程有较好的模拟效果,有冰相物理过程的微物理方案模拟的阻高强度及维持时间较接近实况,整体阻塞闭合环流形势、高压中心值、中心位置以及中心上下游的低压槽强度均与实况接近;无冰相物理过程的微物理方案模拟阻塞高压在500 及200 hPa平均位势高度场上没有闭合的高值中心出现,500 hPa阻塞高压强度弱,持续时间短,200 hPa则相反。进一步研究发现,这两种差异主要由阻塞高压活动区域内的非绝热加热不同引起的,它对阻塞高压形成的强度和维持时间具有很好的指示意义。另外,阻塞高压附近区域的微物理潜热释放对阻塞过程的强度和维持时间也有一定影响。 

关 键 词:数值模拟   阻塞高压   微物理方案   非绝热加热
收稿时间:2019-06-03
修稿时间:2020-03-26

Numerical simulations of a summer blocking process in Northeast Asia using two microphysical schemes
YANG Xu,ZHONG Zhong,LIAN Yi,LI Yanliang and QU Simiao. Numerical simulations of a summer blocking process in Northeast Asia using two microphysical schemes[J]. Acta Meteorologica Sinica, 2020, 78(4): 593-607. DOI: 10.11676/qxxb2020.041
Authors:YANG Xu  ZHONG Zhong  LIAN Yi  LI Yanliang  QU Simiao
Affiliation:1.Jilin Provincial Key Laboratory of Changbai Mountain Meteorology & Climate Change/Laboratory of Research for Middle-High Latitude Circulation Systems and East Asian Monsoon,Institute of Meteorological Sciences of Jilin Province,Changchun 130062,China2.College of Meteorology and Oceanography,National University of Defense Technology,Nanjing 211101,China3.Jilin Meteorological Service,Changchun 130062,China
Abstract:The mesoscale model WRF driven by the NCEP/NCAR FNL reanalysis data is used to simulate a blocking process occurred in Northeast Asia during 25 July—3 August 2011. Comparative analysis of numerical experiments with and without ice phase microphysical processes is conducted to discuss the WRF model ability for the simulation of the strength and maintenance time of the blocking process. The results show that the WRF model can well simulate this blocking process. The results using the microphysical scheme with ice phase process show that the simulated blocking intensity and maintenance time are close to observations. The overall blocking pattern with closed circulation, the pressure value at the blocking high center and its location, the strength of the low-pressure trough upstream and downstream of the high pressure center are consistent with actual situation. The simulation using the microphysics scheme without ice-phase process cannot reproduce the closed high pressure contour in the mean geopotential height fields at 500 and 200 hPa. The simulated blocking is weaker in intensity and shorter in duration than observations at 500 hPa, while the opposite is true at 200 hPa. Further study shows that the differences between the two experiments are mainly caused by different diabatic heating in the blocking area, which is a good indicator of the strength and duration of the blocking. In addition, the microphysical latent heat release near the blocking area also affects the strength and maintenance time of the blocking process.
Keywords:Numerical simulation  Blocking  Microphysical scheme  Diabatic heating
本文献已被 CNKI 等数据库收录!
点击此处可从《气象学报》浏览原始摘要信息
点击此处可从《气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号