首页 | 本学科首页   官方微博 | 高级检索  
     

南海北部海洋生态模型的参数分析及遗传算法优化
引用本文:舒婵,耿兵绪,房巍巍,修鹏. 南海北部海洋生态模型的参数分析及遗传算法优化[J]. 热带海洋学报, 2020, 39(2): 98-106. DOI: 10.11978/2019054
作者姓名:舒婵  耿兵绪  房巍巍  修鹏
作者单位:1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;2. 中国科学院大学, 北京 100049;
基金项目:国家重点研发计划(2016YFC1401604);国家自然科学基金(41576002、41730536、41890805)(41576002);国家自然科学基金(41576002、41730536、41890805)(41730536);国家自然科学基金(41576002、41730536、41890805)(41890805);热带海洋环境国家重点实验室自主课题(LTOZZ1803)
摘    要:海洋生态系统动力学模型是研究海洋生态环境的重要手段。随着模型的发展, 生态参数取值不确定性增加, 对模型结果的影响逐渐增大, 因此模型参数优化显得尤为重要。本研究在南海北部应用一维物理-生态耦合模型, 通过对模型生态参数进行敏感性分析, 获取关键生态参数, 利用遗传算法对参数进行优化。结果表明, 模型中的敏感参数主要集中于浮游植物生长和浮游动物生长、摄食和死亡以及碎屑沉降等过程。针对以上参数利用遗传算法优化, 发现仅加入表层卫星数据, 模型表层和垂向模拟误差分别降低27.80%和21.40%; 加入垂向观测数据, 表层和垂向模拟误差分别降低14.90%和32.70%。遗传算法应用于海洋生态模型的关键参数优化研究, 所获取的参数对模型有明显的改善效果, 提高了耦合模型对生态系统的模拟精度, 为参数优化在三维模型中的应用提供了依据。

关 键 词:南海北部  海洋生态模型  遗传算法  参数优化  
收稿时间:2019-06-06
修稿时间:2019-08-23

Parameter analysis and optimization using genetic algorithm in a marine ecosystem model of the northern South China Sea
Chan SHU,Bingxu GENG,Weiwei FANG,Peng XIU. Parameter analysis and optimization using genetic algorithm in a marine ecosystem model of the northern South China Sea[J]. Journal of Tropical Oceanography, 2020, 39(2): 98-106. DOI: 10.11978/2019054
Authors:Chan SHU  Bingxu GENG  Weiwei FANG  Peng XIU
Affiliation:1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;
Abstract:Marine ecosystem dynamics model is an important means to study marine ecological environment. As the model complexity increases, the number and uncertainty of biological parameters increase, which has a great impact on model results; therefore, optimization of model parameters is particularly important. In this paper, a one-dimensional physical-biological model is applied to the northern South China Sea, and the key biological parameters obtained through sensitivity analysis are optimized by using genetic algorithm. The results show that the sensitive parameters in the model are related to phytoplankton growth, zooplankton growth, feeding and death, and detritus sinking. Based on the genetic algorithm optimization of the above-mentioned parameters, we find that the surface and vertical simulation errors of the model are reduced by 27.80% and 21.40%, respectively, by using only surface satellite data; the surface and vertical simulation errors are reduced by 14.90% and 32.70%, respectively, by adding observed profile data. The success of applying genetic algorithm in the one-dimensional model provides the basis for its further application in three-dimensional marine ecosystem models.
Keywords:northern South China Sea  marine ecosystem model  genetic algorithm  parameter optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《热带海洋学报》浏览原始摘要信息
点击此处可从《热带海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号