首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regional turbulence patterns driven by meso- and submesoscale processes in the Caribbean Sea
Authors:Juan G C Pérez  Paulo H R Calil
Institution:1.Laboratório de Dinamica e Modelagem Oceanica (DinaMO), Instituto de Oceanografía,Universidade Federal do Rio Grande FURG,Rio Grande,Brasil;2.Departamento de Oceanografía Física,Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE),Ensenada,Mexico
Abstract:The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号