首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of viscosity ratio on the dispersal of fracturing fluids into groundwater system
Authors:Qian Sang  Ping Chen  Mingzhe Dong  Guo Tao
Institution:1.Chemical and Petroleum Engineering Department,University of Calgary,Calgary,Canada;2.State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing,China
Abstract:In the development of oil and gas reservoirs, the transport of miscible fluids in porous rocks is a key issue for oil and gas recovery. The simplified unidirectional flow model is employed to investigate the effects of the viscosity ratio on dispersion in semi-infinite homogenous media. The viscosity is supposed to be unsteady due to changing component concentration over time. In cases of both a viscosity ratio larger and less than 1, the pollutant concentration and flow velocity are computed at different initial conditions and viscosity ratios. The analytical solutions are then developed by introducing new variables and transforming the equation governing advection–diffusion equation in semi-infinite homogeneous media with a continuous source. A comparison of the numerical solution with the analytical solution revealed a similarity over 98%, highlighting the usability of the analytical solution. If the viscosity ratio is larger than 1, flow velocity declines exponentially and concentration attenuates with transporting time. In addition, the timescale plays a significant role and the effects become more prominent in long-term transport. In the case of a viscosity ratio less than 1, both the timescale and viscosity ratio variables have little influence on the changing speed of the concentration profile. This work helps to predict the position and the time required to reach the harmless pollutant concentration when monitoring fracturing fluids transportation into groundwater system and would be especially useful in designing and interpreting laboratory experiments studying the miscible flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号