首页 | 本学科首页   官方微博 | 高级检索  
     


Suitability analysis for topographic factors in loess landslide research: a case study of Gangu County,China
Authors:Quanfu Niu  Xinghai Dang  Yuefeng Li  Yingxue Zhang  Xiaolin Lu  Wenxing Gao
Affiliation:1.School of Civil Engineering,Lanzhou University of Technology,Lanzhou,China;2.Department of Microbiology and Plant Biology and Center for Spatial Analysis,University of Oklahoma,Norman,USA
Abstract:Loess Plateau is one of the ecologically fragile regions in China. It is one of the slippery strata of which landslides often developed. The formation and development of landslides are mainly affected by various natural environments, triggering factors, the vulnerability of landslide-bearing bodies, and topography has a controlling effect on landslides and determines landslide distribution. As important environmental elements, the selection and reclassification of topographic factors are the basis for loess landslide vulnerability map. In this study, our research suggests an effective workflow to select and analyze the topographic factors in the loess landslides. Nine hazard-formative environmental factors [e.g., slope, aspect, slope shape (SS), slope of slope (SOS), slope of aspect (SOA), surface amplitude (SA), surface roughness (SR), incision depth (ID) and elevation variation coefficient (EVC)] are prepared for landslide suitability analysis. The models of certainty factor, sensitivity index and correlation coefficient are combined to select and analyze the suitability of these factors. Four topographic factors (i.e., slope, SOS, SS and SR) were ultimately selected to carry out the landslide vulnerability mapping with other factors. Our results showed that most of the landslides were located in medium and high classes and accounting for 75.3%, and these places also coincided with higher economies and intense human activities. Our research also suggested that in situ measurements are necessary to determine how to reclassify these topographic factors and how many grades these topographic factors divided, which would further improve the reliability of landslide vulnerability map for the decision makers to deal with the possible future landslides in terms of safety and human activities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号