首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A study on the decreasing trend in tropical easterly jet stream (TEJ) and its impact on Indian summer monsoon rainfall
Authors:P P Sreekala  S V Bhaskara Rao  M S Arunachalam  C Harikiran
Institution:1. S.V. University, Tirupati, Andhra Pradesh, India
Abstract:Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号