首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The height of the maximum ionospheric electron density over the MU radar
Authors:Shun-Rong Zhang  Shoichiro Fukao  William L Oliver  Yuichi Otsuka
Institution:a Radio Atmospheric Science Center, Kyoto University, Uji, Kyoto 611-0011, Japan;b Wuhan Institute of Physics and Mathematics, CAS, PO Box 71010, Wuhan 430071, People's Republic of China;c Department of Electrical and Computer Engineering and Center for Space Physics, Boston University, Boston, MA 02215, USA
Abstract:Ionospheric F2-layer peak height hmF2 variations, as measured over 1986–1995 by the MU radar (34.85°N, 136.1°E) and as calculated with a theoretical model, are discussed. The diurnal variations of the measured peak height for different seasons and levels of solar activity are compared with those estimated from ionosonde M3000F2 and IRI predictions. Also given are the measured ion drift velocities and meridional neutral winds needed to understand the dynamic behavior of the F2-layer. It is found that: (1) hmF2 is generally higher during periods of the solar maximum than during periods of the solar minimum, and higher in summer than in winter; (2) for the solar maximum, hmF2 drops markedly in the morning and in the afternoon, while, for the solar minimum, the hmF2 minimum occurs in the morning during summer and usually in the afternoon during winter. In general, the measured hmF2 is well reproduced by our model when we use the observed drift velocities and plasma temperatures as inputs. Our modeling study shows that the neutral wind contributes strongly to the diurnal variation of hmF2 in winter by lowering the ionization layer by day, particularly for the solar maximum; it also helps to enlarge the day–night difference of hmF2 in summer. The northward electromagnetic drifts that usually cancel the neutral wind effect have only a minor effect for the location of the MU radar. Other features of the observed hmF2 variations, e.g., the solar maximum–minimum difference, the summer–winter difference, and the morning and afternoon drops, are explained by the basic processes of O+ production, loss and diffusion, as influenced by the atomic oxygen concentration and neutral and plasma temperatures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号