首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SIZE-DISTRIBUTIONS OF CHONDRULE TYPES IN THE INMAN AND ALLAN HILLS A77011 L3 CHONDRITES
Authors:Alan E Rubin  Klaus Keil
Institution:Department of Geology and Institute of Meteoritics University of New Mexico Albuquerque, NM 87131
Abstract:A petrographc study of 9 thin sections of Inman (L3) and 18 thin sections of ALHA77011 (L3) served to determine the size-distributions of different chondrule textural types. Inman chondrules are significantly larger than those in ALHA77011, but in each chondrite, there is no statistically significant difference between the size-distributions of barred olivine and radial pyroxene plus cryptocrystalline chondrules. In ALHA77011, barred olivine chondrules outnumber radial pyroxene plus cryptocrystalline chondrules, whereas in Inman, the reverse is true. Because compound and cratered chondrules were formed by the collision of similarly-sized objects, the dustball precursors of chondrules must have been size-sorted prior to chondrule formation. The region of dustball size-sorting in the solar nebula must have been very large, similarly affecting the physically-separated precursors of different chondrule types. Size-sorting was probably accomplished by aerodynamic particle-gas interactions. Zones of dustball melting (i.e., chondrule formation) were relatively small, generally affecting only dustballs of one compositional type and relatively uniform size. Different chondrule types were then mixed together in somewhat variable ratios. Within the region where chondrites of a particular compositional group agglomerated, there were sub-reservoirs that contained (roughly) uniformly large or uniformly small chondrules with different mixtures of textural types.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号