首页 | 本学科首页   官方微博 | 高级检索  
     

利用单相机和神经网络估计的室内定位导航
引用本文:张丽娜,彭力. 利用单相机和神经网络估计的室内定位导航[J]. 测绘通报, 2017, 0(10): 100-105. DOI: 10.13474/j.cnki.11-2246.2017.0324
作者姓名:张丽娜  彭力
作者单位:1. 浙江安防职业技术学院信息工程学院, 浙江 温州 325000;2. 江南大学信息学院, 江苏 无锡 214000
基金项目:浙江省教育厅一般科研项目,温州市科技局公益性科技计划,浙江安防职业技术学院重点科研项目
摘    要:由于三维场景与二维图像之间存在着非线性和高度复杂的关系,使用相机对用户的位置进行估计需要建立复杂的数学模型。针对该问题,本文提出了使用神经网络估计的单相机进行室内定位的方法。室内定位系统的主要优点是LED能够使用可见光通信发送其位置信息。首先,该方法充分利用LED光线的投影不变性,借助图像传感器通信(ISC)完成虚拟直线的构建;然后,运用神经网络估计从该虚拟直线中提取出相机的方向信息;最后,使用一个简单数学方程估计用户位置。仿真试验考虑了4种情形,结果表明,本文提出的方法性能优于同类方法,对于一个房间内的大部分地方,定位误差在35 mm以内。

关 键 词:室内定位  单相机  神经网络估计  投影不变性  定位误差  
收稿时间:2017-02-21

Indoor Positioning Navigation Based on Single Camera and Neural Network Estimation
ZHANG Lina,PENG Li. Indoor Positioning Navigation Based on Single Camera and Neural Network Estimation[J]. Bulletin of Surveying and Mapping, 2017, 0(10): 100-105. DOI: 10.13474/j.cnki.11-2246.2017.0324
Authors:ZHANG Lina  PENG Li
Affiliation:1. Department of Information Engineering, Zhejiang Security Career Technical College, Wenzhou 325000, China;2. Department of Information Science, Jiangnan University, Wuxi 214000, China
Abstract:Estimating the user's location with a camera requires the establishment of a complex mathematical model because the relationship between 3D scene and a 2D image is non-linear and highly complex. In order to solve this problem,a single camera based on neural network is proposed.The main advantage of the indoor positioning system is that LED can use the visible light communication to send its location information.The proposed method makes full use of LED light projection invariance,and completes the construction of virtual line by means of imaging sensor communication(ISC).Then,neural network estimation is used to extract information from the virtual camera direction lines. Finally, a simple mathematical equation is adopted to estimate the position of the user indoor. Four situations have been considered in the simulation experiments and the results show that the proposed method outperformed state-of-art techniques and its location error is less than 35 mm for most of the space within a room.
Keywords:indoor positioning  single camera  neural network estimation  projection invariance  positioning error
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号