首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars
Authors:Nicolas Mangold  Aline Gendrin  Stephane LeMouelic  Véronique Ansan  Yves Langevin  Gerhard Neukum
Institution:a IDES, UMR8148 CNRS, Université Paris Sud, Bat 509, F-91405 Orsay, France
b IAS, UMR8617, Bat 121, F-91405, Orsay, France
c LPG, CNRS/Université de Nantes, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes cedex 3, France
d Freie Universität, Institut für Geologische Wissenschaften, Malteserstrasse 74-100, D-12249 Berlin, Germany
Abstract:Sulfates have been discovered by the OMEGA spectrometer in different locations of the planet Mars. They are strongly correlated to light toned layered deposits in the equatorial regions. West Candor Chasma is the canyon with the thickest stack of layers and one with the largest area covered by sulfates. A detailed study coupling mineralogy derived from OMEGA spectral data and geology derived from HRSC imager and other datasets leads to some straightforward issues. The monohydrated sulfate kieserite is found mainly over heavily eroded scarps of light toned material. It likely corresponds to a mineral present in the initial rock formed either during formation and diagenesis of sediments, or during hydrothermal alteration at depth, because it is typically found on outcrops that are eroded and steep. Polyhydrated sulfates, that match any Ca-, Na-, Fe-, or Mg-sulfates with more than one water molecule, are preferentially present on less eroded and darker outcrops than outcrops of kieserite. These variations can be the result of a diversity in the composition and/or of the rehydration of kieserite on surfaces with longer exposure. The latter possibility of rehydration in the current, or recent, atmosphere suggests the low surface temperatures preserve sulfates from desiccation, and, also can rehydrate part of them. Strong signatures of iron oxides are present on sulfate-rich scarps and at the base of layered deposits scarps. They are correlated with TES gray hematite signature and might correspond to iron oxides present in the rock as sand-size grains, or possibly larger concretions, that are eroded and transported down by gravity at the base of the scarp. Pyroxenes are present mainly on sand dunes in the low lying terrains. Pyroxene is strongly depleted or absent in the layered deposits. When mixed with kieserite, local observations favor a spatial mixing with dunes over layered deposits. Sulfates such as those detected in the studied area require the presence of liquid water to form by precipitation, either in an intermittent lacustrine environment or by hydrothermal fluid circulation. Both possibilities require the presence of sulfur-rich groundwater to explain fluid circulation. The elevation of the uppermost sulfate signatures suggests the presence of aquifers up to 2.5 km above datum, only 1 km below the plateau surface.
Keywords:Mars  Mineralogy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号