首页 | 本学科首页   官方微博 | 高级检索  
     


Oligarchic growth with migration and fragmentation
Authors:John Chambers
Affiliation:Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA
Abstract:In the core-accretion model, giant-planet cores form by oligarchic growth from a population of planetesimals prior to the dispersal of the disk gas. Once a core reaches a critical mass of roughly 10 Earth masses, it begins to accrete a gaseous envelope, forming a giant planet. Collisions between planetesimals cause fragmentation. Planetesimal fragments are more easily captured by cores, speeding up growth, but fragments are also lost by radial drift, reducing the total solid mass in the disk. Interaction with the gas causes cores to undergo inward type-I migration. Migration allows a core to accrete planetesimals from a larger region, but migrating cores may be lost if they reach the star. Thus, migration and fragmentation have both a positive and a negative impact on core formation. Here we describe results of new simulations of oligarchic growth that include fragmentation and/or migration. In the absence of migration, cores grow until they reach their isolation mass, which increases with distance from the star, or until the disk gas disperses. Fragmentation increases the maximum core mass by increasing growth rates in the outer disk, allowing objects to reach their isolation mass during the disk lifetime. When migration is present, cores migrate inwards rapidly when they approach 1 Earth mass. Most migrating cores are lost. Migrating cores gain little extra mass since they are passing through regions that have been depleted by earlier generations of cores. For a disk viscosity parameter alpha=1e−3 and planetesimal radius = 10 km, the maximum core mass is roughly 4 and 0.5 Earth masses with/without fragmentation, respectively, with little dependence on the disk mass. Formation and survival of 10-Earth-mass cores, in the presence of migration, requires large alpha (1e−2) and a massive disk (0.1 solar masses). When alpha is large, type-I migration rates decrease rapidly with time, allowing large, late-forming cores to survive. The addition of a stochastic (random-walk) migration component makes little difference to the outcome, provided that stochastic migration affects only cores larger than 0.01 Earth masses. Stochastic migration becomes increasingly important if it also affects lower-mass objects.
Keywords:Planetary formation   Origin, Solar System   Planetesimals   Planets, migration   Extrasolar planets
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号