首页 | 本学科首页   官方微博 | 高级检索  
     


Electron reflectometry in the martian atmosphere
Authors:Robert J. Lillis,David L. Mitchell,Mario H. Acuñ  a
Affiliation:a UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, USA
b NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Abstract:The technique of electron reflectometry, a method for remote estimation of planetary magnetic fields, is expanded from its original use of mapping crustal magnetic fields at the Moon to achieving the same purpose at Mars, where the presence of a substantial atmosphere complicates matters considerably. The motion of solar wind electrons, incident on the martian atmosphere, is considered in detail, taking account of the following effects: the electrons' helical paths around the magnetic field lines to which they are bound, the magnetic mirror force they experience due to converging field lines in the vicinity of crustal magnetic anomalies, their acceleration/deceleration by electrostatic potentials, their interactions with thermal plasma, their drifts due to magnetic field line curvature and perpendicular electric fields and their scattering off, and loss of energy through a number of different processes to, atmospheric neutrals. A theoretical framework is thus developed for modeling electron pitch angle distributions expected when a spacecraft is on a magnetic field line which is connected to both the martian crust and the interplanetary magnetic field. This framework, along with measured pitch angle distributions from the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) experiment, can be used to remotely measure crustal magnetic field magnitudes and atmospheric neutral densities at ∼180 km above the martian datum, as well as estimate average parallel electric fields between 200 and 400 km altitude. Detailed analysis and full results, concerning the crustal magnetic field and upper thermospheric density of Mars, are left to two companion papers.
Keywords:Mars   Magnetic fields   Mars, atmosphere
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号