首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of sampling interval on the frequency - magnitude relationship of rockfalls detected from terrestrial laser scanning using semi-automated methods
Authors:Megan van Veen  D Jean Hutchinson  Ryan Kromer  Matthew Lato  Tom Edwards
Institution:1.Department of Geological Sciences and Geological Engineering,Queen’s University,Kingston,Canada;2.BGC Engineering Inc.,Toronto,Canada;3.Canadian National Railway,Edmonton,Canada
Abstract:Using change detection and semi-automated identification methods, it is possible to extract detailed rockfall information from terrestrial laser scanning data to build a database of events, which can be used in the development of the frequency-magnitude relationship for a slope. In this study, we have applied these methods to the White Canyon, a hazardous slope that presents rockfall hazards to the CN Rail line in British Columbia, to build a database of rockfalls including their locations, volumes, and block shapes. We identified over 1900 rockfall events during a 15-month period, ranging in volume from 0.01 to 45 m3. The frequency of these events changed throughout the year, with the highest periods of activity occurring over the winter months. We investigated how the sampling interval, or duration between scans, can affect how the rockfalls are identified, and therefore the frequency-magnitude relationship for the slope using datasets with fewer scans. We show that as the duration between scans becomes larger, fewer rockfalls are detected, as multiple events that have occurred in the same location cluster together into a single event. The results of this study can be used to assist the railways in planning the appropriate number and duration between future scans, in order to capture frequency-magnitude data for the slope with a desired level of detail.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号