Characteristics of moderate- to large-scale landslides triggered by the Mw 7.8 2015 Gorkha earthquake and its aftershocks |
| |
Authors: | Binod Tiwari Beena Ajmera Smriti Dhital |
| |
Affiliation: | 1.Civil and Environmental Engineering Department,California State University,Fullerton,USA |
| |
Abstract: | The M w 7.8 2015 Gorkha earthquake and its aftershocks significantly impacted the lives and economy of Nepal. The consequences of landslides included fatalities, property losses, blockades of river flow, and damage to infrastructural systems. Co-seismic landslides triggered by this earthquake were significantly widespread and pose a major geodisaster. There were tens of thousands of landslides triggered by the earthquake, majority of which were distributed in between the epicenter of the main shock and the M w 7.3 aftershock. Although 14,670 landslides triggered by this earthquake were identified, only approximately 23% of them were of moderate to large scale with areas greater than 100 m2. Of the moderate- to large-scale landslides identified, just over 90% were triggered by the main shock and smaller aftershocks prior to the major (M w 7.3) aftershock, while nearly 10% were triggered by the ground shaking induced by the major aftershock. Moreover, the number of landslides triggered by the 2015 Gorkha earthquake, specifically by the main shock, was slightly more than the expected number of landslides for the recorded maximum peak ground acceleration (PGA) in comparison to the co-seismic landslides triggered by 26 earthquakes. Over 90% of those moderate- to large-scale landslides were concentrated within the estimated fault rupture surface. Majority of these moderate- to large-scale landslides were disrupted failures with over 96% of which were classified as earth falls. However, the majority of small-scale landslides were rock or boulder falls. The most number of moderate- to large-scale landslides were triggered in the slate, shale, siltstone, phyllite, and schist of the Lesser Himalayan formation followed by an equally significant number in both schist, gneiss, etc. of the Higher Himalayan formation and the phyllite, metasandstone, schist, etc. of the Lesser Himalayan formation. The sizes (i.e., areas) of the landslides were lognormally distributed, with a mode area of 322.0 m2. Slope inclinations of the moderate- to large-scale landslides followed a normal distribution with a mean slope inclination of 32.6° and standard deviation of 13.5°. There exists a strong correlation between the number of landslides and the peak ground acceleration within the study area, specific for different geological formations. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|