首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generation of accelerograms compatible with design specifications using information theory
Authors:Anas Batou  Christian Soize
Institution:1. Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454?, Marne-la-Valle, France
Abstract:This paper deals with the generation of seismic accelerograms which are compatible with a given response spectrum and other design specifications. The time sampling of the stochastic accelerogram yields a time series represented by a random vector in high dimension. The probability density function of this random vector is constructed using the maximum entropy (MaxEnt) principle under constraints defined by the available information (design specifications). In this paper, an adapted algorithm is proposed to identify the Lagrange multipliers introduced in the MaxEnt principle to take into account the constraints. This algorithm is based on (1) the minimization of an appropriate convex functional and (2) the construction of the probability distribution defined as the invariant measure of an Itô stochastic differential equation in order to estimate the integrals in high dimension of the problem. The constraints related to a seismic accelerogram are developed explicitly. This methodology is validated through an application for which the available information is related to the variance of each component of the random vector representing the accelerogram, statistics on the response spectrum, on the peak ground acceleration, on the cumulative absolute velocity and on the end-values for the velocity and for the displacement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号