首页 | 本学科首页   官方微博 | 高级检索  
     

顾及空间非平稳特征的遥感干旱监测
引用本文:朱欣然,黄长平,吴波,苏华,焦文哲,张立福. 顾及空间非平稳特征的遥感干旱监测[J]. 遥感学报, 2019, 23(3): 487-500
作者姓名:朱欣然  黄长平  吴波  苏华  焦文哲  张立福
作者单位:中国科学院遥感与数字地球研究所, 北京 100101;中国科学院大学, 北京 100049,中国科学院遥感与数字地球研究所, 北京 100101,福州大学 空间数据挖掘与信息共享教育部重点实验室, 福州 350108;江西师范大学 地理与环境学院, 南昌 330000,福州大学 空间数据挖掘与信息共享教育部重点实验室, 福州 350108,中国科学院遥感与数字地球研究所, 北京 100101;中国科学院大学, 北京 100049,中国科学院遥感与数字地球研究所, 北京 100101
基金项目:重大自然灾害监测预警与防范重点专项(编号:2017YFC1502802);国家自然科学基金(编号:41501394,41571330);中国科学院青年创新促进会(编号:2017086);福建省自然科学基金(编号:2017J01657)
摘    要:遥感技术具备实时快速、时空连续、广覆盖尺度等独特优势,在全球气候恶化大背景下,利用遥感干旱监测方法相比于传统地面监测手段,能够提供实时、准确、稳定的旱情信息,辅助科学决策。目前常用遥感旱情监测方法大多依赖全域性数学模型建模,假定了旱情模式的空间平稳特性,因而难以准确反映旱情模式的局部差异特征。本文提出利用地理加权回归模型GWR (Geographically Weighted Regression),考虑旱情模式的空间非平稳特性,综合多种遥感地面旱情监测指数,以实现传统全域旱情监测模型的局部优化。以美国大陆为研究区,监测2002年—2011年共10年的旱情状态。研究表明,GWR模型能够提供空间变化的局部最佳估计模型参数,监测结果更加吻合标准美国旱情监测USDM (U.S Drought Monitor)验证数据,且与地面实测值的最高相关系数R达到0.8552,均方根误差RMSE达到0.972,显著优于其他遥感旱情监测模型。GWR模型具备空间非平稳探测优势,实现了旱情模式的局部精细探测,能够显著提升遥感旱情监测精度,具备较好的应用前景。

关 键 词:旱情监测  遥感技术  地理加权回归模型  空间非平稳特征  局部优化  美国大陆
收稿时间:2017-09-14

Research on remote sensing drought monitoring by considering spatial non-stationary characteristics
ZHU Xinran,HUANG Changping,WU Bo,SU Hu,JIAO Wenzhe and ZHANG Lifu. Research on remote sensing drought monitoring by considering spatial non-stationary characteristics[J]. Journal of Remote Sensing, 2019, 23(3): 487-500
Authors:ZHU Xinran  HUANG Changping  WU Bo  SU Hu  JIAO Wenzhe  ZHANG Lifu
Affiliation:Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China,Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China,Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China;College of Geography and Environment, Jiangxi Normal University, Nanchang 330000, China,Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China,Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Abstract:Remote sensing technology has the unique advantages of real-time, fast and spatio-temporal continuity and wide coverage scale. Under the background of global climate deterioration, drought monitoring methods based on remote sensing can provide more real-time, accurate, and stable drought information and better assist scientific decision making than traditional ground monitoring methods. (Methods) Most of the existing drought monitoring methods based on remote sensing rely on global mathematical models that assume the spatial stability of drought events; hence, an accurate representation of local difference characteristics is difficult to achieve. In the current study, a geographic weighted regression (GWR) model is proposed to optimize the traditional global drought monitoring model by considering the spatial non-stationary characteristics of drought events and synthesizing various remote sensing drought indices. (Results) This study, which was conducted in mainland United States, focused on drought monitoring over a ten-year period (2002-2011). The results indicate that the GWR model can provide the best model parameters for the local estimation of spatial variations. Moreover, the monitoring results are consistent with the standard verification data of the United States Drought Monitor. The highest correlation coefficient R between the GWR model and the measured data is 0.8552. The RMSE is 0.972, which is significantly superior to other remote sensing drought monitoring models. (Conclusion) The GWR model has the advantage of spatial non-stationary detection and can realize local fine detection in drought modeling. Moreover, the GWR model can significantly improve the precision of remote sensing drought monitoring and thus has a good application prospect.
Keywords:drought monitoring  remote sensing  geographically weighted regression  spatial non-stationarity  local optimizing  CUS
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号