Abstract: | This study investigates potential changes in nitrogen and phosphorus loads under a warmer and wetter climate, urban growth, and combined changes in the Conestoga River Basin and its five subbasins in southeastern Pennsylvania. A GIS‐based hydrochemical model was employed for assessing the sensitivity of the basins to the projected changes in 2030. Under the HadCM2 climate change scenario, mean annual nitrogen and phosphorus loads are expected to increase, with great increases in spring but slight decreases in fall primarily because of changes in monthly precipitation. When climate change and urbanization occur concurrently, mean annual nitrogen loads further increase by 50% in the most urbanizing subbasin. Point source nitrogen control could mitigate negative effects of climate and land use changes, reducing mean annual nitrogen loads to the contemporary baseline level. |