首页 | 本学科首页   官方微博 | 高级检索  
     


High-temperature metamorphic imprint on calc-silicate granulites of Rayagada,Eastern Ghats,India: implication for the isobaric cooling path
Authors:R. K. Shaw  M. Arima
Affiliation:(1) Geological Institute, Yokohama National University, Tokiwadai 156, Hodogaya-ku, Yokohama 240, Japan, JP
Abstract: Calc-silicate granulites from Rayagada, north-central sector of Eastern Ghats granulite belt show a wide range of mineral assemblages and chemical compositions, which can be grouped as Gr. I (grossular- rich garnet-wollastonite-scapolite-calcite-clinopyroxene), Gr. II (andradite-rich garnet-scapolite-calcite-clinopyr- oxene), and Gr. III (scapolite-calcite-clinopyroxene-plagioclase) assemblages. Petrographic features suggest the following several reactions in the CaO–Al2O3–SiO2-vapor system: Mei+4Wo+Cal=3Grs+Qtz +2CO2, Mei+3Wo+2Cal=3Grs+CO2, Mei= 3An+Cal, Wo+CO2=Cal+Qtz, Mei+5Wo =3Grs+2Qtz+CO2, An+Wo=Grs+Qtz, Mei+ 5Cal+3Qtz=3Grs+6CO2, and the following reactions in the CaO–FeO–MgO–Al2O3–SiO2-vapor system: Cpxss+Scp+Wo=Grtss+Qtz+CO2, 4Hd+ 2Cal+O2=2Adr+2Qtz+2CO2, Cpxss+Scp= Grtss+Cal+Qtz. These reactions have been used to estimate peak T-X CO2 condition for these granulites. A maximum temperature of ∼920 °C has been calculated at an estimated pressure of 9 kbar. A T-X CO2 diagram shows an isobaric cooling from ∼920 °C to ∼815 °C. A range of X CO2 (0.50 at 920 °C to 0.25 at 815 °C) has been observed for Gr. I calc-silicate granulites based on the reaction sequences including coronal garnet-forming reactions. This sequence is suggestive of internal fluid buffering rather than external fluid influx and the differences in X CO2 conditions has been thought to be due to local buffering of fluid phases. Group II and Gr. III calc-silicate granulites, on the other hand, exhibit relatively lower temperature conditions. Received: 11 September 1995/Accepted: 20 June 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号