首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进mRMR特征选择的云型识别研究
引用本文:王俊,谢明元,杨玲,汤志亚,杨智鹏. 基于改进mRMR特征选择的云型识别研究[J]. 气象科技, 2013, 41(5): 803-808
作者姓名:王俊  谢明元  杨玲  汤志亚  杨智鹏
作者单位:1 成都信息工程学院电子工程学院,成都 610225; 2 中国气象局大气探测重点开放实验室,成都 610225;成都信息工程学院教务处,成都 610225;1 成都信息工程学院电子工程学院,成都 610225; 2 中国气象局大气探测重点开放实验室,成都 610225;1 成都信息工程学院电子工程学院,成都 610225; 2 中国气象局大气探测重点开放实验室,成都 610225;1 成都信息工程学院电子工程学院,成都 610225; 2 中国气象局大气探测重点开放实验室,成都 610225
基金项目:公益性行业(气象)专项:天气现象自动化观测技术研究(GYHY200906032)资助
摘    要:传统的云型识别主要是提取云的颜色、纹理和形状等特征,但这些特征中存在不相关和冗余特征,导致云型识别率降低.在最大相关最小冗余(max relevance and min-redundancy,mRMR)特征选择方法的基础上,运用互信息标准化形式(Symmetrical Uncertainty,SU)克服互信息偏向于取值较多属性的固有缺点,提出了改进的mRMR特征选择方法,对云的综合特征集进行特征筛选,筛选出最优特征子集,运用支持向量机进行云型识别.试验结果表明该方法优于mRMR方法,使层云、积云、高积云、卷云和晴空5种天空类型的总正确率提高,特征选择前、后的总识别率分别为86.96%、89.04%,识别率提高了2%;对于云型识别研究,经过特征选择后可知纹理特征优于形状特征,基于形状的Zernike矩优于HU不变矩,基于纹理的灰度共生矩阵为最优特征提取方法.

关 键 词:云型识别  互信息  mRMR
收稿时间:2012-05-27
修稿时间:2012-10-09

Study of Cloud Type Recognition Based on an Improved mRMR Feature Selection Method
Wang Jun,Xie Mingyuan,Yang Ling,Tang Zhiya and Yang Zhipeng. Study of Cloud Type Recognition Based on an Improved mRMR Feature Selection Method[J]. Meteorological Science and Technology, 2013, 41(5): 803-808
Authors:Wang Jun  Xie Mingyuan  Yang Ling  Tang Zhiya  Yang Zhipeng
Affiliation:Wang Jun Xie Mingyuan Yang Ling Tang Zhiya Yang Zhipeng College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225; 2 CMA Key Laboratory of Atmospheric Sounding, Chengdu 610225 ; 3 Dean's Office of Chengdu University of Information Technology, Chengdu 610225)
Abstract:In the traditional cloud type recognition method, a set of features describing the color, texture and shape features of clouds are extracted, in which there are some irrelevance and redundancy features leading to the reduced recognition rate of cloud type. Based on the criteria of the max relevance and min redundancy (mRMR), symmetrical uncertainty is employed to overcome the inherent defect of mutual information, which tends to have more value attributes. The improved mRMR feature selection method is putted forward, and the best feature subsets are selected by this method, and then the support vector machine is used to the recognition of cloud type. Experimental results show that the correct recognition rate of altocumulus, cirrus, clear, cumulus, and stratus are improved significantly, with the total recognition rate being 86.96%; after feature selection, the total recognition rate can increase to 89.04%, and the recognition rate increases by 2%. For cloud type classification research, the texture feature is better than the shape feature; the shape features based on Zernike moment is better than HU moment invariants; the texture feature based on the gray level co occurrence matrix is the optimum feature extraction method.
Keywords:cloud type recognition   feature extraction   mutual information   feature selection   mRMR
本文献已被 维普 等数据库收录!
点击此处可从《气象科技》浏览原始摘要信息
点击此处可从《气象科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号