首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Peatland restoration: controls on sediment production and reductions in carbon and pollutant export
Authors:E L Shuttleworth  M G Evans  S M Hutchinson  J J Rothwell
Institution:1. Upland Environments Research Unit, School of Environment, Education and Development, University of Manchester, Manchester, UK;2. School of Environment and Life Sciences, University of Salford, Salford, UK
Abstract:Peatlands are an important store of soil carbon, and play a vital role in global carbon cycling, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. Large areas of the UK's blanket peat are significantly degraded and actively eroding which negatively impacts carbon and pollutant storage. The restoration of eroding UK peatlands is a major conservation concern, and over the last decade measures have been taken to try to control erosion and restore large areas of degraded peat. This study utilizes a sediment source fingerprinting approach to assess the effect of restoration practices on sediment production, and carbon and pollutant export in the Peak District National Park, southern Pennines (UK). Suspended sediment was collected using time integrated mass flux samplers (TIMS), deployed across three field areas which represent the surface conditions exhibited through an erosion–restoration cycle: (i) intact; (ii) actively eroding; and (iii) recently re‐vegetated. Anthropogenic pollutants stored near the peat's surface have allowed material mobilized by sheet erosion to be distinguished from sediment eroded from gully walls. Re‐vegetation of eroding gully systems is most effective at stabilizing interfluve surfaces, switching the locus of sediment production from contaminated surface peat to relatively ‘clean’ gully walls. The stabilization of eroding surfaces reduces particulate organic carbon (POC) and lead (Pb) fluxes by two orders of magnitude, to levels comparable with those of an intact peatland, thus maintaining this important carbon and pollutant store. The re‐vegetation of gully floors also plays a key role in decoupling eroding surfaces from the fluvial system, and further reducing the flux of material. These findings indicate that the restoration practices have been effective over a relatively short timescale, and will help target and refine future restoration initiatives. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:sediment fingerprinting  sediment source tracing  organic sediment  upland erosion  re‐vegetation  POC  lead
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号