首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic fragility of plasterboard partitions via in‐plane quasi‐static tests
Authors:Crescenzo Petrone  Gennaro Magliulo  Pauline Lopez  Gaetano Manfredi
Institution:1. Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy;2. Product Development Department, Etex Dry Co, Avignon, France
Abstract:The seismic damage of internal partitions may cause significant earthquake loss; this phenomenon is caused by (a) their tendency to exhibit damage for low demand levels and (b) the consequent loss of inventory and breakdown that their collapse can cause. Quasi‐static tests are performed on six 5‐m‐high plasterboard internal partitions, which represent typical partitions in industrial and commercial buildings in the European area. A steel test setup is designed to transfer the load, which is provided by the actuator, to the partition. The testing protocol provided by Federal Emergency Management Agency (FEMA) 461 is adopted for the quasi‐static tests. The typical failure mode of the specimens is the buckling of a steel stud, which involves the boards that are attached to the buckled stud. The buckling failure usually concentrates across the plasterboard horizontal joints. A frictional behavior is exhibited for low demand levels, whereas a pinched behavior is shown for moderate‐to‐high demand levels. The interstory drift ratios required to reach a given damage limit state are evaluated using a predefined damage scheme. Based on the experimental data, the fragility curves for three different damage states (DS1, DS2, and DS3) are estimated. The fragility curve yields median interstory drift ratio values of 0.28%, 0.81%, and 2.05% and logarithmic standard deviations of 0.39, 0.42, and 0.46 for DS1, DS2, and DS3, respectively. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:nonstructural components  internal partitions  quasi‐static test  testing protocol  seismic performance  fragility curves
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号