首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Iterative implicit integration procedure for hybrid simulation of large nonlinear structures
Authors:G Mosqueda  M Ahmadizadeh
Institution:Department of Civil, Structural and Environmental Engineering, 212 Ketter Hall, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A.Associate Professor.
Abstract:A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:hybrid simulation  pseudo‐dynamic experiment  implicit integration  tangent stiffness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号