首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flow structures at an idealized bifurcation: a numerical experiment
Authors:R J Hardy  S N Lane  D Yu
Institution:1. Department of Geography, University of Durham, , Durham, DH1 3LE UK;2. Institut de géographie, Faculté des géosciences et de l'environnement, Université de Lausanne, Batiment Anthropole, , Lausanne, CH‐1015 Switzerland;3. Department of Geography, Loughborough University, , Loughborough, Leicestershire, LE11 3TU UK
Abstract:River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid‐channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22° to 42°) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:CFD  bifurcations  braided rivers  geometric sensitivity analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号