首页 | 本学科首页   官方微博 | 高级检索  
     


Vegetation succession prevents dry lake beds from becoming dust sources in the semi‐arid steppe region of China
Authors:Fengjun Zhao  Hongyan Liu  Yi Yin  Guozheng Hu  Xiuchen Wu
Affiliation:College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, P.R. China
Abstract:East Asian dust storms have become increasingly intense over the last two decades, and the arid inland regions of northern China have been recognized as the main dust source areas. Numerous lakes in this region have recently become desiccated, leaving large areas of bare ground prone to becoming potential dust sources. Vegetation cover characteristics and vegetation succession following lake desiccation remain unclear. Here we chose eight inland dry lakes, one outflow lake and one river on the southeast edge of the Inner Mongolian Plateau to investigate vegetation patterns along transects from lake bed to lake shore, and determine the relationships between vegetation patterns and environmental factors. The results show that dry lake bed soils do indeed have high contents of fine particles. Also, soil salt content is the most critical control on vegetation succession on desiccated lake beds, and vegetation is unlikely to colonize areas with soil salt content ≥5%. Soil texture additionally influenced vegetation patterns by affecting soil salt content. The likely vegetation succession on dry like beds is Nitraria tangutorum community > Suaeda corniculata and Suaeda glauca communities > Achnatherum splendens and Elymus sibiricus communities, and finally Carex duriuscula community as the probable climax. When vegetation is at the later stages of succession, for example with Achnatherum splendens communities, Elymus sibiricus communities and Carex duriuscula communities, soil may be protected from wind erosion because of their high vegetation cover and high proportion of perennials. We suggest grazing should be avoided around lake shores, especially in Achnatherum splendens communities, because high vegetation cover and biomass not only protect soil from erosion, but also promote the deposition of fine particles blown from upwind regions. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:dust storms  vegetation succession  wind erosion  soil salt content
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号