首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A cellular model of Holocene upland river basin and alluvial fan evolution
Authors:T J Coulthard  M G Macklin  M J Kirkby
Abstract:The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:CAESAR  cellular  model  river  basin  alluvial fan
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号