首页 | 本学科首页   官方微博 | 高级检索  
     检索      


HF radiation emitted by chaotic leader processes
Institution:1. Department of Obstetrics, Gynecology & Women''s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI;2. Department of Obstetrics & Gynecology, University of Utah School of Medicine, Salt Lake City, UT;3. Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI
Abstract:This paper presents direct measurements of narrowband 10 MHz HF radiation from so-called “chaotic leaders” associated with subsequent return strokes. Although the term is controversial and poorly defined, we find that more than 30% of subsequent strokes in close lightning flashes contain electric field characteristics that are best described as “chaotic”. In earlier studies, return strokes have consistently been observed to be the strongest sources of HF radiation, but the results for leader processes are less consistent. We also observe return strokes to be the main HF emitter, and the leaders before the first return stroke in a flash sequence also emit HF though somewhat less intensely. The leaders preceding subsequent strokes typically emit little or no HF radiation, whether they are dart or dart-stepped leaders.However, it was observed that the presence of a chaotic component increases the leader HF intensity dramatically Defining the HF intensity unequivocally can be problematic for processes like chaotic leaders which have a combination of continuous and impulsive phenomena. Two time-domain methods were used to measure the HF intensity, the peak energy and the RMS energy. In the frequency domain these correspond to the energy spectral density (ESD) and power spectral density (PSD), respectively.It was found that the methods are not necessarily compatible. Thus, it is suggested that to clarify future work, leader processes should be characterized by the PSD rather than the ESD.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号