Calculated Phase Relations in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with Applications to UHP Eclogites and Whiteschists |
| |
Authors: | YANG, JIAN-JUN POWELL, ROGER |
| |
Affiliation: | 1 STATE KEY LABORATORY OF LITHOSPHERIC EVOLUTION, INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES P.O. BOX 9825, BEITUCHENG XILU 19, BEIJING 100029, P.R. CHINA 2 SCHOOL OF EARTH SCIENCES, THE UNIVERSITY OF MELBOURNE PARKVILLE, VIC. 3010, AUSTRALIA |
| |
Abstract: | Pressuretemperature grids in the system Na2OCaOK2OFeOMgOAl2O3SiO2H2O and its subsystems have been calculatedin the range 1545 kbar and 550900°C, usingan internally consistent thermodynamic dataset and new thermodynamicmodels for amphibole, white mica, and clinopyroxene, with thesoftware THERMOCALC. Minerals considered for the grids includegarnet, omphacite, diopside, jadeite, hornblende, actinolite,glaucophane, zoisite, lawsonite, kyanite, coesite, quartz, talc,muscovite, paragonite, biotite, chlorite, and plagioclase. Compatibilitydiagrams are used to illustrate the phase relationships in thegrids. Coesite-bearing eclogites and a whiteschist from Chinaare used to demonstrate the ability of pseudosections to modelphase relationships in natural ultrahigh-pressure metamorphicrocks. Under water-saturated conditions, chlorite-bearing assemblagesin Mg- and Al-rich eclogites are stable at lower temperaturesthan in Fe-rich eclogites. The relative temperature stabilityof the three amphiboles is hornblende > actinolite > glaucophane(amphibole names used sensu lato). Talc-bearing assemblagesare stable only at low temperature and high pressure in Mg-and Al-rich eclogites. For most eclogite compositions, talccoexists with lawsonite, but not zoisite, in the stability fieldof coesite. Water content contouring of pressuretemperaturepseudosections, along with appropriate geotherms, provides newconstraints concerning dehydration of such rocks in subductingslabs. Chlorite and lawsonite are two important H2O-carriersin subducting slabs. Depending on bulk composition and pressuretemperaturepath, amphibole may or may not be a major H2O-carrier to depth.In most cases, dehydration to make ultrahigh-pressure eclogitestakes place gradually, with H2O content controlled by divariantor higher variance assemblages. Therefore, fluid fluxes in subductionzones are likely to be continuous, with the rate of dehydrationchanging with changing pressure and temperature. Further, eclogitesof different bulk compositions dehydrate differently. Dehydrationof Fe-rich eclogite is nearly complete at relatively shallowdepth, whereas Mg- and Al-rich eclogites dehydrate continuouslydown to greater depth. KEY WORDS: dehydration; eclogites; phase relations; THERMOCALC; UHP metamorphism; whiteschists |
| |
Keywords: | : dehydration eclogites phase relations THERMOCALC UHP metamorphism whiteschists |
本文献已被 Oxford 等数据库收录! |
|